Revision summary

Use the following summary of syllabus dot points and key knowledge within Module 5 to ensure that you have thoroughly reviewed the content. Provide a brief definition or comment for each item to demonstrate your understanding or code them using the traffic light system – green (all good), amber (needs some review), red (priority area to review). Alternatively, write a follow-up strategy.

How does reproduction ensure the continuity of a species?			
Advantages and disadvantages of asexual and sexual reproduction			
Advantages and disadvantages of external and internal fertilisation			
Modes of asexual and sexual reproduction in animals, plants, fungi, bacteria and protists			
Features of fertilisation, implantation and hormonal control of pregnancy and birth in mammals			
Impact of scientific knowledge on the manipulation of plant and animal reproduction in agriculture			
Cell replication: How important is it for genetic material to be replicated exactly?			
Structure of DNA			
DNA replication using the Watson and Crick DNA model			
Comparison of mitosis and meiosis			
Effect of mitosis and meiosis on the continuity of species			
DNA and polypeptide synthesis: Why is polypeptide synthesis important?			
Comparison of DNA structure and function in prokaryotic and eukaryotic cells			

1

>>

2

>>	Modelling of polypeptide synthesis. Include transcription, translation, location and all molecules involved	
	The role of genes and environment on phenotypic expression	
	The hierarchical levels of a functional protein	
	Genetic variation: How can the genetic similaritie	s and differences within and between species be compared?
	Crossing over homologous chromosomes, independent assortment and random segregation	
	The role of fertilisation and mutations	
	Autosomal, sex-linkage, codominance, incomplete dominance and multiple allele inheritance	
	Punnett squares and pedigrees	
	Single nucleotide polymorphism (SNP)	
	Inheritance patterns in a population: Can popula	tion genetic patterns be predicted with any accuracy?
	DNA sequencing and profiling	
	Short tandem repeats (STRs)	
	PCR and gel electrophoresis	
	Large-scale collaborative project using population genetics data to study conservation management, inheritance of disease/disorder or human evolution	